183 research outputs found

    Learning the kernel with hyperkernels

    No full text
    This paper addresses the problem of choosing a kernel suitable for estimation with a support vector machine, hence further automating machine learning. This goal is achieved by defining a reproducing kernel Hilbert space on the space of kernels itself. Such a formulation leads to a statistical estimation problem similar to the problem of minimizing a regularized risk functional. We state the equivalent representer theorem for the choice of kernels and present a semidefinite programming formulation of the resulting optimization problem. Several recipes for constructing hyperkernels are provided, as well as the details of common machine learning problems. Experimental results for classification, regression and novelty detection on UCI data show the feasibility of our approach

    Technical report : SVM in Krein spaces

    Get PDF
    Support vector machines (SVM) and kernel methods have been highly successful in many application areas. However, the requirement that the kernel is symmetric positive semidefinite, Mercer's condition, is not always verifi ed in practice. When it is not, the kernel is called indefi nite. Various heuristics and specialized methods have been proposed to address indefi nite kernels, from simple tricks such as removing negative eigenvalues, to advanced methods that de-noise the kernel by considering the negative part of the kernel as noise. Most approaches aim at correcting an inde finite kernel in order to provide a positive one. We propose a new SVM approach that deals directly with inde finite kernels. In contrast to previous approaches, we embrace the underlying idea that the negative part of an inde finite kernel may contain valuable information. To de fine such a method, the SVM formulation has to be adapted to a non usual form: the stabilization. The hypothesis space, usually a Hilbert space, becomes a Krei n space. This work explores this new formulation, and proposes two practical algorithms (ESVM and KSVM) that outperform the approaches that modify the kernel. Moreover, the solution depends on the original kernel and thus can be used on any new point without loss of accurac

    Squared Neural Families: A New Class of Tractable Density Models

    Full text link
    Flexible models for probability distributions are an essential ingredient in many machine learning tasks. We develop and investigate a new class of probability distributions, which we call a Squared Neural Family (SNEFY), formed by squaring the 2-norm of a neural network and normalising it with respect to a base measure. Following the reasoning similar to the well established connections between infinitely wide neural networks and Gaussian processes, we show that SNEFYs admit a closed form normalising constants in many cases of interest, thereby resulting in flexible yet fully tractable density models. SNEFYs strictly generalise classical exponential families, are closed under conditioning, and have tractable marginal distributions. Their utility is illustrated on a variety of density estimation and conditional density estimation tasks. Software available at https://github.com/RussellTsuchida/snefy.Comment: Preprin
    corecore